Question
Given a string containing just the characters '('
and ')'
, find the length of the longest valid (well-formed) parentheses substring.
For "(()"
, the longest valid parentheses substring is "()"
, which has length = 2.
Another example is ")()())"
, where the longest valid parentheses substring is "()()"
, which has length = 4.
Stats
Frequency | 1 |
Difficulty | 4 |
Adjusted Difficulty | 4 |
Time to use | -------- |
Solution
There are 2 ways to solve this problem, stack and DP.
Stack method 1 is more straight-forward (code shown below). The idea is to keep a stack of “(” indexes, and another variable called “last”. Note that only “)” can violates a pattern. So whenever I see a “(”, just push to stack. When the pattern is violated by a “)”, I update “last”. The code explains itself very well. If not, look here
Stack method 2 is more tricky. This time I will not only push the index of “(” to stack, but also the index of “)” when the pattern got violated. It’s hard to explain, and hard to think of at first.
The DP solution is not very difficult. Basically create an array of same length as string s. dp[i] denotes the length of valid parenthese ending with index i. The idea is similar to this blog, but he used reverse DP, and I use normal DP.
I will explain DP with an example of input “)()()”. For this string, we have dp[0] = 0, dp[1] = 0, dp[2] = 2, dp[3] = 0. For dp[4], I check the 3rd position first, and find that dp[4] = 2. Then I also have to add dp[2] into dp[4] to make it complete. The end result is dp[4] = 2 + 2 = 4.
My code
Stack method 1 (recommended)
public class Solution {
public int longestValidParentheses(String s) {
if (s == null || s.length() == 0) {
return 0;
}
int len = s.length();
int longest = 0;
Stack<Integer> stack = new Stack<Integer>();
int start = 0;
for (int i = 0; i < len; i++) {
char ch = s.charAt(i);
if (ch == '(') {
// well, no matter what, '(' is alway a valid part
// push the index to the stack
stack.push(i);
} else if (ch == ')') {
if (stack.isEmpty()) {
// invalid ')', update 'start' variable
start = i + 1;
} else {
int pos = stack.pop();
if (stack.isEmpty()) {
// this is why we need 'start' variable
longest = Math.max(longest, i - start + 1);
} else {
// important: must peek stack again.
// eg. (()() if don't peek again
longest = Math.max(longest, i - stack.peek());
}
}
}
}
return longest;
}
}
Stack method 2
public int longestValidParentheses(String s) {
int res = 0;
Stack<Integer> stack = new Stack<Integer>();
char[] arr = s.toCharArray();
for (int i = 0; i < arr.length; i++) {
if (arr[i] == ')' && !stack.isEmpty() && arr[stack.peek()] == '(') {
stack.pop();
if (stack.isEmpty()) res = i + 1;
else res = Math.max(res, i - stack.peek());
} else stack.push(i);
}
return res;
}
DP
public int longestValidParentheses(String s) {
int len = s.length();
if (len <= 1) return 0;
int max = Integer.MIN_VALUE;
int[] dp = new int[len];
for (int i = 1; i < len; i ++) {
if (s.charAt(i) == '(') dp[i] = 0;
else {
int j = i - 1 - dp[i - 1];
if (j >= 0 && s.charAt(j) =='(') {
dp[i] = dp[i - 1] + 2;
if (j >= 1) dp[i] += dp[j - 1];
}
else dp[i] = 0;
}
max = Math.max(max, dp[i]);
}
return max;
}