Question
Given a binary tree, determine if it is a valid binary search tree (BST).
Assume a BST is defined as follows:
- The left subtree of a node contains only nodes with keys less than the node's key.
- The right subtree of a node contains only nodes with keys greater than the node's key.
- Both the left and right subtrees must also be binary search trees.
Stats
Frequency | 5 |
Difficulty | 3 |
Adjusted Difficulty | 3 |
Time to use | -------- |
Ratings/Color = 1(white) 2(lime) 3(yellow) 4/5(red)
Analysis
This is a textbook-like example of recursion.
I solved it using DFS, but there is actually a much more concise solution.
Code
First, my code, it’s basically a in-order traversal.
int num = Integer.MIN_VALUE;
public boolean isValidBST(TreeNode root) {
if (root == null) return true;
if(! isValidBST(root.left)) return false;
if (num >= root.val) return false;
num = root.val;
if(! isValidBST(root.right)) return false;
return true;
}
Second, great solution I found from this post
public static boolean isValidBST(TreeNode root) {
return validate(root, Integer.MIN_VALUE, Integer.MAX_VALUE);
}
public static boolean validate(TreeNode root, int min, int max) {
if (root == null) return true;
if (root.val <= min || root.val >= max)
return false;
return validate(root.left, min, root.val)
&& validate(root.right, root.val, max);
}