Woodstock Blog

a tech blog for general algorithmic interview questions

[NineChap 3.1] Binary Tree DFS and Divide Conquer

DFS

Recursion or While-Loop?

We can use recursion, because unless it’s pre-order traverse, binary tree questions can be difficult.

Solving the problem is more important.

Divide & Conquer Algorithm

  1. Merge Sort
  2. Quick Sort
  3. Most of Binary tree questions

Solution modal

Generally, D&C questions would do 2 things at same time:

  1. Divide - For binary tree, it mean solve left child, and solve right child
  2. Conquer - return result value

A very common type would be validating the left/right children and return -1 if the validation failed. Otherwise, a result value is returned. In this way, by checking the positive/negative sign, we know whether this node is valid, and if valid, we know the returned value.

This idea is extensivelly used among all binary tree questions. See “Lowest Common Ancestor (LCA)” for more details.

Template

Divide & Conquer, link

public class Solution {
    public ResultType traversal(TreeNode root) {
        // null or leaf
        if (root == null) {
            // do something and return;
        }

        // Divide
        ResultType left = traversal(root.left);
        ResultType right = traversal(root.right);

        // Conquer
        ResultType result = Merge from left and right.
        return result;
    }
}

Question list

Traversal

  1. Binary Tree Preorder Traversal

  2. Binary Tree Inorder Traversal

  3. Binary Tree Postorder Traversal

Divide & Conquer

  1. Maximum Depth of Binary Tree

  2. Minimum Depth of Binary Tree

  3. Balanced Binary Tree

  4. Binary Tree Maximum Path Sum - the most important question for this category

Additional

  1. Lowest Common Ancestor Problem

    problem one

    problem two

    problem three

Code

Binary Tree Preorder Traversal

public List<Integer> preorderTraversal(TreeNode root) {
    List<Integer> ans = new LinkedList<Integer>();
    if (root == null) return ans;
    Stack<TreeNode> stack = new Stack<TreeNode>();
    stack.push(root);
    while (!stack.isEmpty()) {
        TreeNode cur = stack.pop();
        ans.add(cur.val);
        if (cur.right != null) {
            stack.push(cur.right);
        } 
        if (cur.left != null) {
            stack.push(cur.left);
        }
    }
    return ans;
}

There is a not-recommended but good-to-know solution of Divide & Conquer (not written by me)

public class Solution {
    public ArrayList<Integer> preorderTraversal(TreeNode root) {
        ArrayList<Integer> result = new ArrayList<Integer>();
        // null or leaf
        if (root == null) {
            return result;
        }

        // Divide
        ArrayList<Integer> left = preorderTraversal(root.left);
        ArrayList<Integer> right = preorderTraversal(root.right);

        // Conquer
        result.add(root.val);
        result.addAll(left);
        result.addAll(right);
        return result;
    }
}

Binary Tree Inorder Traversal

Keep traversing left until a NULL is found. When it happens, pop one and traverse right once. Remember this solution!

public ArrayList<Integer> inorderTraversal(TreeNode root) {
    ArrayList<Integer> ans = new ArrayList<Integer>();
    if (root == null) {
        return ans;
    }
    Stack<TreeNode> stack = new Stack<TreeNode>();
    TreeNode p = root;
    while (p != null || !stack.isEmpty()) {
        if (p != null) {
            stack.push(p);
            p = p.left;
        }
        else {
            p = stack.pop();
            ans.add(p.val);
            p = p.right;
        }
    }
    return ans;
}

Binary Tree Postorder Traversal

I failed to write the code even after reading the solution. I need to memorize this solution by heart.

public List<Integer> postorderTraversal(TreeNode root) {
    List<Integer> ans = new ArrayList<Integer>();
    if (root == null) {
        return ans;
    }
    Stack<TreeNode> stack = new Stack<TreeNode>();
    stack.push(root);
    TreeNode pre = null;
    TreeNode cur = null;
    while (!stack.isEmpty()) {
        cur = stack.peek();
        if (pre == null || pre.left == cur || pre.right == cur) {
            if (cur.left != null) {
                stack.push(cur.left);
            } else if (cur.right != null) {
                stack.push(cur.right);
            }
        } else if (cur.left == pre) {
            if (cur.right != null) {
                stack.push(cur.right);
            }
        } else if (cur.right == pre || cur == pre) {
            // note that 'pre' and 'cur' are never going to be apart
            // for more then 1 edge (they can overlap) 
            ans.add(stack.pop().val);
        }
        pre = cur;
    }
    return ans;
}

Maximum Depth of Binary Tree

// 1 minute
public int maxDepth(TreeNode root) {
    if (root == null) return 0;
    return 1 + Math.max(maxDepth(root.left), maxDepth(root.right));
}

Minimum Depth of Binary Tree

public int minDepth(TreeNode root) {
    if (root == null) {
        return 0;
    }
    return checkLeaf(root);
}

private int checkLeaf(TreeNode node) {
    if (node.left == null && node.right == null) {
        return 1;
    }
    int ll = Integer.MAX_VALUE;
    int rr = Integer.MAX_VALUE;
    if (node.left != null) ll = checkLeaf(node.left);
    if (node.right != null) rr = checkLeaf(node.right);
    return 1 + Math.min(ll, rr);
}

After checking the answer, the code above can be optimized:

public int minDepth(TreeNode root) {
    if (root == null) {
        return 0;
    }
    return getMin(root);
}

public int getMin(TreeNode root){
    if (root == null) {
        return Integer.MAX_VALUE; // important
    }

    if (root.left == null && root.right == null) {
        return 1;
    }

    return Math.min(getMin(root.left), getMin(root.right)) + 1;
}

Balanced Binary Tree

// 4 minutes
public boolean isBalanced(TreeNode root) {
    return getDepth(root) != -1;
}

private int getDepth(TreeNode node) {
    if (node == null) {
        return 0;
    }
    int ll = getDepth(node.left);
    int rr = getDepth(node.right);
    if (ll == -1 || rr == -1 || Math.abs(ll - rr) > 1) {
        return -1;
    }
    return 1 + Math.max(ll, rr);
}

Binary Tree Maximum Path Sum

Although the following code works:

int max = Integer.MIN_VALUE;

public int maxPathSum(TreeNode root) {
    maxDepth(root);
    return max;
}

private int maxDepth(TreeNode node) {
    if (node == null) {
        return 0;
    }
    int ll = maxDepth(node.left);
    int rr = maxDepth(node.right);
    int currentMaxPath = ll + rr + node.val;
    max = Math.max(max, currentMaxPath);
    return Math.max(0, node.val + Math.max(ll, rr));
}

Mr. Huang said it’s AN EXTREMELY BAD IDEA TO USE GLOBAL VARIABLE in Java. It’s just terrible. Don’t do it.

According to Mr. Huang’s suggestion, I added another class called “ResultType”. This can help me return 2 values at 1 single traversal.

Code is below. One ‘catch-ya’ is when NULL is found, the maxPath should return Integer.MIN_VALUE instead of 0.

This code is much easier for both me and anyone else to understand, so stick to this solution, and never use global variable in Java!

private class ResultType {
    int singlePath, maxPath;
    ResultType(int singlePath, int maxPath) {
        this.singlePath = singlePath;
        this.maxPath = maxPath;
    }
}

public int maxPathSum(TreeNode root) {
    ResultType result = helper(root);
    return result.maxPath;
}

private ResultType helper(TreeNode node) {
    // null case
    if (node == null) {
        return new ResultType(0, Integer.MIN_VALUE);
    }
    // divide
    ResultType ll = helper(node.left);
    ResultType rr = helper(node.right);
    // conquer
    int curSinglePath = Math.max(0, node.val + 
            Math.max(ll.singlePath, rr.singlePath));
    int childMaxPath = Math.max(ll.maxPath, rr.maxPath);
    int curMaxPath = Math.max(childMaxPath, node.val + 
            ll.singlePath + rr.singlePath);
    // done
    return new ResultType(curSinglePath, curMaxPath);
}

Lowest Common Ancestor - I wrote three new posts on this topic:

Problem 1: BST: top-down O(height) solution

Problem 2: Binary Tree: bottom-up O(n) solution

Problem 3: Binary Tree with a link to parent