Woodstock Blog

a tech blog for general algorithmic interview questions

[Design] BST Node Insertion / Deletion

First Word

For BST it’s very important to do insert and delete (balancing not required).

Insertion is easy, but deletion is very difficult. However, it’s a good idea to at least know the principles.

Insert a node

Steps:

  1. check whether new value = current node value. If not, proceed.

  2. if new value is less, than:

    1. if current node has no left child, set left to new value, and return

    2. otherwise, go to left child and start over

  3. if new value is greater, than:

    1. if current node has no right child, set right to new value

    2. otherwise, go to right child and start over

Note:

The BST may not be balanced after the insertion.

Code

Code snippet from this article

public boolean add(TreeNode node, int value) {
    if (value == node.val)
        return false;
    if (value < node.val) {
        if (node.left == null) {
            node.left = new TreeNode(value);
            return true;
        } else {
            return add(node.left, value);
        }
    } else if (value > node.val) {
        if (node.right == null) {
            node.right = new TreeNode(value);
            return true;
        } else {
            return add(node.right, value);
        }
    }
    return false;
}

Delete a node

Steps:

  1. Find the node
  2. Find the maximum node in the left subtree
  3. Replace the node with the maximum node in the left subtree.

Special Cases:

  1. The node doest have a left child.
  2. The maximum node in the left subtree has a left child.
  3. The node is the root of the tree

Code

The source code given by ninechap

private void myDeleteNode(TreeNode parent, TreeNode node) {
    if (node.left == null) {
        if (parent.right == node) {
            parent.right = node.right;
        } else {
            parent.left = node.right;
        }
    } else {
        TreeNode maxNodeParent = node;
        TreeNode maxNode = node.left;

        // find the maximum node in the left sub tree
        while (maxNode.right != null) {
            maxNodeParent = maxNode;
            maxNode = maxNode.right;
        }

        if (maxNodeParent.left == maxNode) {
            maxNodeParent.left = maxNode.left;
        } else {
            maxNodeParent.right = maxNode.left;
        }

        // move replacedNode to node
        maxNode.left = node.left;
        maxNode.right = node.right;
        if (parent.left == node) {
            parent.left = maxNode;
        } else {
            parent.right = maxNode;
        }
    }
}

private void findAndDelete(TreeNode parent, TreeNode node, int val) {
    if (node == null) {
        return;
    }
    if (node.val == val) {
        myDeleteNode(parent, node);
    } else if (node.val < val) {
        findAndDelete(node, node.right, val);
    } else {
        findAndDelete(node, node.left, val);
    }
}

public TreeNode deleteNode(TreeNode root, int val) {
    TreeNode dummyNode = new TreeNode(0);
    dummyNode.left = root;
    findAndDelete(dummyNode, root, val);
    return dummyNode.left;
}

A little bit on balancing

There are 2 ways to balance a tree. Most common method is tree rotation:

An AVL Trees means a self-balancing search trees. If balance gets out of range −1…+1, the subtree is rotated to bring into balance.

Second way is to convert tree into a linkedlist, then build the tree again (we have discussed this algorithm before, pick the middle element).

This method is slow if we insert and re-balance on each step, but we can do bulk insert/delete forgetting about the re-balancing for a while. This will make the data structure faster! more details