Question
N块石头排成一行,两个玩家依次取石头,每个玩家可以取其中任意一块或者相邻的两块,最后能将剩下的石头一次取光的玩家获胜。
Solution
- when n = 1, first move wins
- when n = 2, first move wins
- when n = 3, first move removes middle stone, wins
- when n = 4, first move removes 2 stones from middle, wins
- when n = 5, first move removes middle stone, which leaves 2 piles of stones of count 2. First move wins.
So to conclude the above, we will have:
先取者只要取中间的元素,N为奇数取中间一个,偶数取中间两个,将石头分为两部分,然后无论第二个人怎么取,先取者只要在另一部分的同样位置取走同样多的石头,则最后先取者必胜
Quoted from 王川的私房菜 .